REGUPOL ANTIRUTSCHMATTEN

Beschleunigungskräfte bei Transporten

Häufig werden die aus unsachgemäßer Ladungssicherung resultierenden Gefahren weit unterschätzt. Denn die Beschleunigungskräfte bei verkehrsüblichen Fahrzuständen erreichen annähernd das Eigengewicht der Ladung. Die Reibungskraft F_F einer Antirutschmatte wirkt einer Ladungsverschiebung entgegen und wird physikalisch wie folgt beschrieben:

$$F_{F} = \mu \cdot F_{O}$$

 $F_F = \mu \cdot F_G$ $F_G = Gewichtskraft$ $\mu = Gleitreibbeiwert$

$$F_{G} = m \cdot g$$

m = Masse

g = Erdbeschleunigung

Die Differenz zwischen Massenkraft $F_{\rm M}$ und Reibungskraft F_F bezeichnet man als Sicherungskraft F_B:

$$F_R = F_{x,y} - F_F$$

Die Sicherungskraft F₂ ist die Kraft, die von den Sicherungsmitteln aufgenommen werden muss. Korrekte Ladungssicherung wird durch ein Gleichgewicht der beim Fahrbetrieb wirkende gegensätzliche Kräfte erreicht.

Die Ladungssicherung ist ausreichend, wenn die Summe der Reibungskraft F_F und der Sicherungskraft F_R mindestens so groß ist wie die Massenkraft F_{M} . Die Reibungskraft wird durch Antirutschmatten erhöht, die Sicherungskraft durch Zurrmittel und andere Sicherungsmittel.

Reibungskraft + Sicherungskraft

Ladungssicherung =

Die Ladung muss nur für den normalen Fahrbetrieb gesichert werden. Zum normalen Fahrbetrieb gehören Vollbremsungen, starke Ausweichmanöver und schlechte Wegstrecken.

Folgende Kräfte können im normalen Fahrbetrieb auftreten:

- In Fahrtrichtung maximal 0,8 g, das entspricht 80 % des Ladungsgewichtes.
- · Zu den Seiten maximal 0,5 g, das entspricht 50 % des Ladungsgewichtes.
- · Nach hinten maximal 0,5 g, das entspricht 50 % des Ladungsgewichtes.

Beispiel ___

Ermittlung der Vorspannkraft F, mit und ohne Antirutschmatten

$$F_{T} = \frac{(c_{x} - \mu_{D})}{\mu_{D} \cdot \sin \alpha} \cdot \frac{F_{G}}{K}$$

 μ_{D} = 0,2 (ohne Antirutschmatte)

 $\sin \alpha = 1$

 $F_{G} = 10000 \, daN$ K = 1.8

$$F_{T} = \frac{(0.8 - 0.2)}{0.2 \cdot 1} \cdot \frac{10\ 000\ daN}{1.8}$$

$$F_{T} = 16666,66 \text{ daN}$$

Bei einer Vorspannkraft von 500 daN je Spanngurt benötigt man hier ohne Antirutschmatten 34 Spanngurte.

Setzt man hier Antirutschmatten ein und erhöht den Gleitreibbeiwert somit auf μ = 0,6, verringert sich die Anzahl auf 4 Spanngurte.